

 After completing this lesson you will understand about

 The concept of inheritance, and how it supports the concept of
reusability.

 The derivation of a new class and the different visibility modes
under which the new class is derived.

 The different types of inheritance.
 The execution of constructors in the derived class.
 The abstract class.

9.1 Introduction To Inheritance

9.2 Derived Class Declaration

9.3 Types Of Inheritance

9.3.1 Single Inheritance

9.3.2 Multilevel Inheritance

9.3.3 Hierarchical Inheritance

9.3.4 Multiple Inheritance

9.3.5 Multi-path Inheritance

9.3.6 Hybrid Inheritance

9.4 Constructors In Derived Class

9.5 Abstract Class

9.6 Summary

9.7 Technical Terms

9.8 Model Questions

9.9 References

Lesson 9 : Inheritance

Objectives

SSttrruuccttuurree OOff TThhee LLeessssoonn

Inheritance is an important feature of object oriented programming, it is
the process of extending a class to define new class. It allows new
classes to be built from older and less specialized classes, instead of
rewriting from the scratch. It allows the reuse of the pre-tested code of a
class without changing the class. In this process the extended class is
called base class and the newly defined class is called derived class. The
base class is sometimes called a super class and correspondingly
derived class is called sub class.

The derived class inherits all the capabilities of the base class and can
add refinements and extensions of its own. There is no specific limit on
the number of classes that may be derived from one another, which forms
a class hierarchy.

Feature A

Feature B

Feature C

Feature D

Feature A

Feature B

Feature C

Defined in derived class

Defined in base
class and also
accessible from
derived class

99..11 IInnttrroodduuccttiioonn TToo IInnhheerriittaannccee

C++ supports the access specifiers private, public and protected. As far
as access limit is concerned, the private and protected members can be
accessed only within the class . Public members are always accessible
directly by all users of the class.

Base class name
{
private:
: // visible to member functions within its class but not in
derived class
:
protected
: //visible to member functions within its class and derived
class
:
public
: // visible to member functions within its class,
: //derived class and through object
};

The derived class extends its features by inheriting the properties of
another class, called base class and adding features of its own. The
declaration of derived class specifies its relationship with the base class
in addition to its own features.

The syntax for declaring a derived class is:
class derivedclass : [visibility mode Or Access specifier] baseclass
{
//Derived class members (member functions and variables)
};

In the above syntax class is a keyword, derived class is name of the
new class. “:” is used as a separator between the derived class name and
the access speciifier. The visibility mode tells the way in which the base
class is inherited (private, protected or public). The visibility mode is
optional and the default mode is private. “baseclass” is the name of the
class from which the properties are being inherited.

99..22 DDeerriivveedd CCllaassss DDeeccllaarraattiioonn

e.g.: class student : private/public person

derived class name Access specifier base class
{
……… };

Visibility Modes: There are three types of visibility modes. They are:
i) Private
ii) Protected
iii) Public

These are used for specifying the way in which the properties of the base
class are inherited.

Private: If the access specifier “private”, is used to inherit the properties
of base class, then

i) The private data of the base class cannot be inherited but can
be accessed through the inherited member.

ii) The protected data of the base class is inherited as the private
data. It cannot be used in the main function. But, it can be
accessed using the base class or the derived class member
function.

iii) The public data of the base class is inherited as private data in
the derived class. They are inaccessible to the objects of the
derived class. It can be accessed by the member functions of
the derived class.

 e.g:
class base
{
private:
int x;
readx();
protected:
int y;
ready();
public:
int z;
readz();
}

class der: private base
{
private:

int w;
public:

void read();
void display();
};

In the above example, variable x cannot be inherited, but both y and z
are inherited as private variables in the derived class. They can be
accessed through the functions read() and display(). They cannot be used
directly by the main().

Protected: When the access specifier “protected” is used to inherit base
class properties,

 The private data of the base class cannot be inherited but can be

accessed through the inherited members.
 Protected member in the base class are inherited as protected data in

the derived class.
 The public data in the base class is inherited as protected data of the

derived class.
class base
{
private:
int x;
readx();
protected:
int y;
ready();
public:
int z;
readz();
}
class der: protected base
{
private:

int w;
public:

void read();
void display();

};

In the above example, ‘x’ cannot be inherited. y and z are inherited as
protected members and thus can be used in read() and display() they can
be further inherited but they can not be accessed from the ,main

Public: If the access specifier “public” is used to inherit the properties of
base class, then

 The private data of the base class cannot be inherited as member of

derived class but can be accessed through the inherited member
functions.

 The protected member of the base class is the member of the derived
class.

 The public member of the base class is the public member in the
derived class.

class base
{
private:
int x;
readx();
protected:
int y;
ready();
public:
int z;
readz();
}
class der: public base
{
private:

int w;
public:

void read();
void display();

};
In the above example ‘x’ cannot be inherited into the derived class, ‘y’ is
inherited as a protected member of the derived class and ‘z’ can be
accessed from the main itself.

 Visibility Of Inherited Members:

Base class
visibility

 Derived class visibility
Public

derivation
Private

derivation
Protected
derivation

Private Not inherited Not inherited Not inherited
Protected Protected Private Protected
Public Public Private Protected

There are five types of inheritance

a. Single inheritance
b. Multilevel inheritance
c. Hierarchical inheritance
d. Multiple inheritance
e. Hybrid inheritance

Derivation of a class from only one base class is called single inheritance.

Programs To Illustrate Simple Inheritance

class A
{
 protected:
 int a_data;
 public:
 A () {a_data =0 ;}
 A (int X) {a_data =X ;}
 void showA ()
 {
 cout<< “\n\t a_data; }
};

class B: public A
{
 private:
 int b_data;
 public:
 B () {b_data = 0 ;}

Base Class

Derived Class

Base Class

Derived Class

99..33 TTyyppeess OOff IInnhheerriittaannccee

99..33..11 SSiinnggllee IInnhheerriittaannccee

 B (int X) {b_data =X ;}
 void print _total ()
 {
 cout<< “\n\t total =”
 << a_data +b_data;
 }
 B (int X, int Y)
 {

 a_data = X;
 b_data = Y;
 }
};

void main ()
{
 B bobj (10, 20);
 bobj. print_total ();
 }

Program to display salaried employees data using single
inheritance.

 # include < iostream. h>
 # include < string. h>
 class employee
 {
 public:

 employee (char * name, char * id, char * addr);
 void print ();
 protected:
 char name [25], id [20], addr [100];
 double net_Sal;

 };
 class salaried_employee: public employee
 {
 public:
 salaried_employee (char * name, char *id,
char * addr, double sal);
 void show ();
 void give rise ();
 private:
 double basic_pay;
 };
employee:: employee (char * na, char * id, char * addr)
{
 strcpy (name, na);

 strcpy (id, idy);
 strcpy (addr, adr);
 net_sal =0;
}
void employee: : print ()
{
 cout<< “ \n\t Name:” <<name
 << “\t ID:” <<id;
 cout<< “\n\t Address:” << addr;
}
salaried_employee:: salaried_employee (char *na, char
*idy, char * addr, double sal): employee (na, idy, addr)
{
 basic_pay =sal;
}

void salaried employee ::give_raise ()
{
 basic_pay += 100;
}
void salaried employee : : show ()
{
 print ();
 cout<< “\n\t Salary:” << basic_pay;
}
void main ()
{
 salaried Employee e1 (“Ravi”, “ID 1”, “ unknown”,
5000);
 e1. show ();
 e1. give_raise ();
 e1. show ();
}

When a class is derived from another derived class, such type of
inheritance is known as Multilevel Inheritance.

99..33..22 MMuullttiilleevveell IInnhheerriittaannccee

A derived class with multilevel inheritance is as follows:

Program to display the result of the student using multilevel
inheritance

#include<iostream.h>
class student
{
protected:
int rno;
public:
void getnum(int x)
{rno = x;}
void putnumb()
{ cout<<"Roll number:"<<rno<<endl;
}
};
class test: public student
{
protected:
float m1,m2;
public:

student

test

result

Base Class

Intermediate base class

Derived Class

void getmarks(float x,float y)
{
m1 = x;
m2 = y;
}
void putmarks()
{
cout<<"Marks in sub1="<<m1<<endl;
cout<<"Marks in sub2="<<m2<<endl;
}
};

class result: public test
{
float total;
public:
void display()
{
total = m1 + m2;
putnumb();
putmarks();
cout<<"Total ="<<total<<endl;
}
};
void main()
{
result st1;
cout<<"STUDENT INFORMATION"<<endl<<endl;
st1.getnum(111);
st1.getmarks(78.0,89.5);
st1.display();
}

output:

STUDENT INFORMATION
Roll number:111
Marks in sub1=78
Marks in sub2=89.5
Total =167.5

Derivation of several classes from a single base class i.e., the traits of
one class may be inherited by more than one class, is called hierarchical
inheritance.

Here is an example for hierarchical inheritance:

include<iostream.h>
define MAX_LEN 25
class vehicle
{
 protected:

9.3.3 Hierarchical Inheritance

Base Class

Derived class3 Derived class2 Derived class1

 VEHICLE

GEAR
MOTOR

 HEAVY MOTOR LIGHT MOTOR

PASSENGER NON-GEAR
MOTOR

 GOODS

 char name[MAX_LEN];
 unsigned wheelscount;
 public:
 void getdata()
 {
 cout<< " \n\t Name?";
 cin>>name;
 cout<< "\t Wheels?";
 cin >> wheelscount;
}
void displaydata ()
{
 cout<< " \n\t Name:"
 << name
 << " \t Wheels :"
 << wheelscount;
 }
};
class lightmotor : public vehicle

{
 protected:
 int speedlimit;
 public:
 void getdata()
 {
 vehicle :: getdata();
 cout<< "\n\t speed?";
 cin>>speedlimit ;
 }
 void displaydata()
 {
 vehicle :: displaydata();
 cout << "\n\t speed limit
:"<<speedlimit;
 }

};
class heavymotor : public vehicle
{
 protected:
 int loadcapacity;
 char permit[MAX_LEN];
 public:
 void getdata ()
 {
 vehicle :: getdata();

 cout<< " \t load?";
 cin >>loadcapacity;
 cout<< " \t Permit?";
 cin >>permit;
 }
 void displaydata()
 {
 vehicle :: displaydata();
 cout << "\n\t Load :"
 << loadcapacity
 << " \n\t Permit:"
 << permit;
 }
};
class gearmotor: public lightmotor
{
 protected:
 int gearcount;
 public:
 void getdata()
 {
 lightmotor :: getdata();
 cout<< " \t No of gears ?";
 cin>> gearcount;
 }
 void displaydata()
 {
 lightmotor :: displaydata();
 cout << " \t gear :" << gearcount;
 }
};
class nongearmotor : public lightmotor
{ };
class passenger : public heavymotor
{
 protected:
 int sitting, standing;
 public :
 void getdata()
 {
 heavymotor ::getdata();
 cout<< "\n\t Seats?";
 cin >> sitting;
 cout << "\t standing ?";
 cin >> standing;

 }
 void displaydata()
 {
 heavymotor :: displaydata();
 cout<< "\n\t seats :" << sitting;
 cout<< " \t standing :" << standing;
 }
};
class goods :public heavymotor
{ };
void main ()
{
 gearmotor gm;
 nongearmotor ngm;
 passenger p;
 goods g;
 cout<< "\t Input for Gearmotor :";
 gm.getdata();
 cout<<"\n Gearmotar\n ";

 Seats?45
 standing ?20

 Passenger carrier

 Name:bus Wheels :6
 Load :600
 Permit:ap
 seats :45 standing :20
 input for goods carier:
 Name?lorry
 Wheels?6
 load?2000
 Permit?ap

 Goods Carrier

 Name:lorry Wheels :6
 Load :2000
 Permit:ap

Derivation of a class from two or more base classes, this type of
inheritance is called multiple inheritance. Multiple inheritance is shown in
the following diagram.

Example: Let a class ‘C’ be derived from two base classes ‘A’ and ‘B’
then class C is defined with the following syntax

 class c : public A, public B

{
 _ _ _ _
 _ _ _ _
 Body of class c
 _ _ _ _ _
 _ _ _ _ _ _

};

A program to demonstrate multiple inheritance

#include<iostream.h>
class A
{
 protected:
 int a;
 public:
 A() { a = 0;}
 A(int d) {a= d;}
};

Base class

 Derived class

Base class Base class

99..33..44 MMuullttiippllee IInnhheerriittaannccee

class B
{
 protected :
 int b;
 public:
 B () {b=0;}
 B(int x) {b = x;}
};
class C: public A,public B
{
 private:
 int c;
 public:
 C() {c = 0;}
 C(int i, int j, int k): A(i), B(j)
 {
 c =k;
 }
 void display()
 {
 cout<< "\n\t sum =" <<(a+b+c);
 }
};
void main ()
{
 C cobj (10,20,30);
 cobj.display ();
}

output:
 sum = 60

Program related to products company modeling using multiple
inheritance

#include<iostream.h>
class publication
{
 protected :
 char title [50];
 float price;
 public:
 void getdata()
 {
 cout<< "\n\t Title ?";
 cin>> title;
 cout<< " \t price ?";
 cin >> price;
 }
 void putdata()
 {
 cout<< " \n\t Title:" << title;
 cout<< " \t price:" <<price;
 }
};
class sales
{
 protected :
 float publishsales[3];

Notice

Pamphlet Book Tape

Sales Publication

 public:
 void getdata()
 {
 int i;
 for (i=0; i<3; i++)
 {
 cout<< "Sales of the month" <<(i+1)
 << " :";
 cin>> publishsales[i];

 }
 }
 void putdata()
 {
 int i; float tot = 0;
 for(i =0; i<3; i++)
 {
 cout<< " \n sales of the month"<<(i+1)
 << ":"<< publishsales[i];
 tot += publishsales[i];
 }
 cout<< " \n\t Total sales :"<<tot;
 }
};
class book : public publication, public sales
{
 private:
 int pages;
 public:
 void getdata()
 {
 publication :: getdata();
 sales :: getdata();
 cout<< "\n\t #of pages ?";
 cin >> pages;
 }
 void putdata()
 {
 publication :: putdata();
 sales ::putdata();
 cout<< "\n\t No of pages :"<<pages;
 }
};
class tape: public publication, public sales
{

 private:
 float playtime;
 public:
 void getdata()
 {
 publication ::getdata();
 sales ::getdata();
 cout<< " \t play time ?";
 cin >> playtime;
 }
 void putdata()
 {
 publication :: putdata();
 sales :: putdata();
 cout<< " \n\t play time:"
 << playtime;
 }
};
class pamphlet : public publication
{ };
 class notice : public pamphlet
{
 private:
 char whom[20];
 public :
 void getdata()
 {
 pamphlet ::getdata();
 cout<< " \t To whom ?";
 cin>> whom ;
 }
 void putdata()
 {
 pamphlet ::putdata();
 cout<< " \t To whom :?"<< whom ;
 }
 };
void main()
 {
 book book1;
 tape tape1;
 pamphlet p1;

 cout<< "\n\t Enter Book data :";
 book1.getdata();

 cout<< " \n\t Enter Tape Data :";
 tape1.getdata();
 cout<< "\n\t Enter notice data :";
 notice1.getdata();
 cout<< "\n\t \t OUTPUT \n";
 cout<< "\n Book:" ; book1.putdata();
 cout<< "\n Tape :"; tape1.putdata();
 cout << "\n Notice:";notice1.putdata();
 } //end of main ()

 output:

 Enter Book data :
 Title ?c++
 price ?300
Sales of the month1 :45
Sales of the month2 :56
Sales of the month3 :67

 #of pages ?450

 Enter Tape Data :
 Title ?Bhajans
 price ?50
Sales of the month1 :60
Sales of the month2 :70
Sales of the month3 :80
 play time ?60

 Enter notice data :
 Title ?Games
 price ?10
 To whom ?students
 play time ?60

 OUTPUT

 Book:
 Title:c++ price:300
 sales of the month1:45
 sales of the month2:56
 sales of the month3:67
 Total sales :168
 No of pages :450

 Tape :
 Title:Bhajans price:50
 sales of the month1:60
 sales of the month2:70
 sales of the month3:80
 Total sales :210
 play time:60
 Notice: Title:Games price:10 To whom :?students

The form of inheritance, deriving a new class by multiple inheritance of
base classes, which are derived earlier from the same base class, is
known as multipath inheritance. This type of inheritance involves multiple
forms of inheritance namely multilevel, multiple and hierarchical
inheritance. The child class is derived from the same base class parent1
and parent2(multiple inheritance), which themselves have a common
base class grandparent(hierarchical inheritance). The child inherits the
properties of grandparent via two separate paths. The classes, parent1
and parent2 are referred as direct base classes, whereas grandparent is
referred to as indirect base class. The inheritance diagram for multi-path
inheritance is as shown below

Multipath inheritance may cause duplicate items to be derived into the
child class, twice via parent1 and parent2, of the grandparent class. C++
avoids this ambiguity by introducing virtual base classes. This is done by
making the common base class as a virtual base class, while declaring
the direct or intermediate classes (parent1 & parent2).

99..33..55 MMuullttiippaatthh IInnhheerriittaannccee

Grand Parent

Grand Child

Parent 2 Parent 1

The following example of student database uses multipath inheritance to
derive the classes in the chart:

include < iostream.h>
const int MAX_LEN =25;
class student
{
 protected:
 int rollno;
 char name [MAX_LEN];
 public:
 void read ()
 {
 cout<< "\n\t Roll_No ?";
 cin >> rollno;
 cout<< " \t name ?";
 cin >> name;
 }
 void print ()
 {
 cout<< " \n\t Name:"
 <<name << "\t Roll_No:"
 <<rollno;
 }
};
class internalexam: public virtual student
{
 protected:
 int marks1, marks2;
 public:
 void readdata()
 {
 cout<< "\n\t Input marks in2 subjects:";
 cin>> marks1 >>marks2;
 }

Result

External Exam Internal Exam

Student

 void displaydata()
 {
 cout<< "\n\t Internal marks:"
 <<marks1<< " "
 <<marks2;
 cout<< "\n\t\t Total:"
 << gettotalinternal();
 }
 int gettotalinternal()
 {
 return (marks1+marks2);
 }
};
class externalexam :public virtual student
{
 protected:
 int marks1, marks2;
 public:
 void readdata()
 {
 cout<< "\n\t Input marks in 2 subjects:";
 cin>> marks1 >>marks2;
 }
 void displaydata()
 {
 cout<< "\n\t External marks:"
 << marks1<< " " << marks2;
 cout<< "\n\t\t Total:"
 << gettotalexternal ();
 }
 int gettotalexternal()
 {
 return(marks1+marks2);
 }
};
class result:public internalexam, public externalexam
{
 public:
 int gettotalmarks()
 {
 return (gettotalinternal()+gettotalexternal());
 }
};

void main ()

{
 result stud1;
 cout<< "\n\t Input student info:";
 stud1.read();
 cout<< "\n\t Reading internal marks:";
 stud1.internalexam::readdata();
 cout<< "\n\t Reading external marks:";
 stud1.externalexam ::readdata();
 cout<<"\n\t\t OUTPUT:";
 stud1.print();
 stud1.internalexam::displaydata ();
 stud1.externalexam:: displaydata();
 cout<<"\n\tTotal marks:"<< stud1.gettotalmarks();
}

output:
 Name:qwer Roll_No:1
 Internal marks:23 24
 Total:47
 External marks:24 35
 Total:59
 Total marks:106
 Input student info:
 Roll_No ?1
 name ?sai

 Reading internal marks:
 Input marks in2 subjects:15 18

 Reading external marks:
 Input marks in 2 subjects:75 71

 OUTPUT:
 Name:sai Roll_No:1
 Internal marks:15 18
 Total:33
 External marks:75 71
 Total:146
 Total marks:179

Derivation of a class involving more than one form of inheritance is known
as hybrid inheritance.

Program to calculate the result of the student using hybrid
inheritance

#include<iostream.h>
class student
{
protected:
int rno;
public:
void getnum(int x)
{rno = x;}
void putnumb()
{ cout<<"Roll number:"<<rno<<endl;
}
};
class test: public student
{
protected:
float m1,m2;
public:
void getmarks(float x,float y)
{
m1 = x;

student

test

result

sports

99..33..66 HHyybbrriidd IInnhheerriittaannccee

m2 = y;
}
void putmarks()
{
cout<<"Marks in sub1="<<m1<<endl;
cout<<"Marks in sub2="<<m2<<endl;
}
};
class sports
{
protected:
float score;
public:
void getscore(float s)
{score = s;}
void putscore()
{
cout<<"Sports score:"<<score<<endl;
}
};
class result: public test, public sports
{
float total;
public:
void display()
{
total = m1 + m2 + score;
putnumb();
putmarks();
putscore();
cout<<"Total ="<<total<<endl;
}
};
void main()
{
result st1;
cout<<"STUDENT INFORMATION"<<endl<<endl;
st1.getnum(111);
st1.getmarks(78.0,89.5);
st1.getscore(6.0);
st1.display();
}

output:

STUDENT INFORMATION
Roll number:111
Marks in sub1=78
Marks in sub2=89.5
Sports score:6
Total =173.5

 As long as the base class has no constructor this derived class
need not have constructor.

 If base class has the constructor with one or more arguments then
it is compulsory for the derived class to have constructor and it
must pass the arguments to the base class. The base class
constructor is executed first then the derived.

 In multiple inheritance the base classes are constructed in the
order in which they appear in the declaration of the derived class.

 In the multilevel inheritance the constructor will be executed in the
order of inheritance.

 Execution Of Base Class Constructor :

Method of Inheritance

Order of execution

class B: public A
 {

 };

A(): base constructor
B(): derived constructor

class A: public B , public C
 {
 };

B() :base(first)
C() :base(second)
A() :derived

class A: public B, public virtual C
 {

 };

C() :virtual base
B() :ordinary base
A() :derived

99..44 CCoonnssttrruuccttoorrss IInn DDeerriivveedd CCllaassss

The General Form Of Defining A Derived Constructor Is:

Derived-constructor (Arglist 1, Arglilst 2, …. ArglistN , Arglist (D)

 base 1(arglist1),
 base 2(arglist2),
 …….
 …….
 baseN(arglistN),

 {
 Body of derived constructor
 }

A sample program using derived class constructors

#include<iostream.h>
class alpha
{
 int x;
 public :
 alpha (int i)
 {
 x=i;
 cout<<"Alpha is initialized\n ";
 }
 void show_x()
 {
 cout<<"x="<<x<<endl;
 }
};
class beta
{
 float y;
 public :
 beta (float j)
 {
 y = j;
 cout<<"Beta initialized\n";
 }

 void show_y(void)
 {
 cout<<"y="<< y<<"\n";

 }
};
class gamma:public beta,public alpha
{
 int m,n;
 public:
 gamma(int a, float b,int c, int d): alpha(a),beta(b)
 {
 m = c;
 n = d;
 cout<<"Gamma initialized\n";
 }
 void show_mn(void)
 {
 cout<<"m= "<<m<<"\nn="<<n<<"\n";
 }
};
void main()
{
 gamma g(5,10.75,20,30);
 cout<<"\n";
 g.show_x();
 g.show_y();
 g.show_mn();
}

output:

Beta initialized
Alpha is initialized
Gamma initialized

x=5
y=10.75
m= 20
 n=30

An abstract class is a class which is not used to create objects. It acts as
only a base class for the other derived class. A class that contains at least
one pure function is known as abstract class.

 We have covered the concept of inheritance. The derivation of a new
class from the base class.

 The different visibility modes and the visibility of the base class
inheritance in different modes are studied.

 The different types of inheritance are covered in detail.
 The usage of constructors in the derived class is also covered.

Abstract class: A class that serves as only base class from which
classes are derived. No object of abstract base class are created.

Base class: A class from which other classes are derived.

Derived class: A class that inherits some or all of its functions from
another class, called the base class.

Intermediate class: A class that lies on an inheritance path connecting a
base class and a derived class.

Protected member: A protected member is same as a private member
except that protected members of the base class can be inherited.

Reusability: A feature of OOP where it allows the reuse of existing class
without redifinition.

99..55 AAbbssttrraacctt CCllaassss

99..66 SSuummmmaarryy

99..77 TTeecchhnniiccaall TTeerrmmss

Virtual base class: A base class that can be qualified as virtual in the
inheritance definition. For a virtual base class, only one copy of its
members can be inherited regardless of the number of inheritance paths
between the base class and the derived class.

Visibility : The ability of one object to be server to others.

1. What is inheritance? Explain with example.
2. What is the difference between base and derived classes?
3. What are the different forms of inheritance supported by C++? Explain

with examples.
4. Explain the importance of Inheritance.

.

Object-oriented programming with C++,

by E. Bala Guruswamy.
Problem solving with C++

by Walter Savitch
Mastering C++

by K.R.Venugopal, RajkumarBuyya, T.RaviShankar

AUTHOR:

M. NIRUPAMA BHAT, MCA., M.Phil.,
 Lecturer,

Dept. Of Computer Science,
 JKC College,

GUNTUR.

99..88 MMooddeell QQuueessttiioonnss

99..99 RReeffeerreenncceess

